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1 INTRODUCTION

1 Introduction

I grew up obsessed with Lego. I would love to build cars, robots, planes and anything my mind

could imagine. As a physics student I now understand that machinery is not as simple as putting

blocks together. Machinery takes power and electricity. This is why I chose to investigate the

phenomenon that powers our life: electromagnetic induction. Both electric motors and electric

generators depend on this principle to function. Through its application, motors turn electrical energy

into mechanical energy and generators turn mechanical energy into electrical energy. Although both

machines function on the same principle they are very different from one another. For example, an

induction motor depends on the torque generated from the induced current to operate, whilst the

generator can either benefit or suffer from the torque production. For the present investigation, I

will analyze a system where a torque is generated from an induced current, a system that assimilates

aspects of both electric machines. Consisting of a rotating loop in the presence of a magnetic field,

like in a generator, but the magnetic field is going to rotate, like in a motor. The objective of this

investigation is to model the behaviour of the torque with respect to time and analyze its implications

on the rotation of the loop. Thus, we look to answer the question: to what extent can we determine

the behaviour of the magnetic torque with respect to time produced on a conducting and rotating

rectangular loop from a varying magnetic flux? This will be achieved through a theoretical and

mathematical analysis of the system and verified with the data of a simulator.
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2 THEORETICAL FRAMEWORK

2 Theoretical framework

2.1 Magnetic Field

A magnetic field (B⃗) is a vector field that depicts the flow of the flux lines produced from the influence

of a current or a magnet. For a current, according to its direction we apply the right hand rule to

determine the orientation of its magnetic field. For a permanent magnet the flow of the field will

always be the same, diverging from the north pole and converging into the south pole.

Figure 1: Magnetic field of a permanent magnet. [1]

In 1882, by varying the currents passing through 4 electromagnets, Nikola Tesla developed an

essential component of the modern AC induction motor: the rotating magnetic field (R.M.F)1[2].

For the present investigation, we will simulate this phenomenon by rotating a permanent magnet

causing the field to move accordingly.

2.2 Magnetic Flux

The magnetic flux (ϕB) is a measure of how many magnetic field lines pass through a surface. For

any surface it is expressed as:

ϕB =

∫
B⃗ · dA⃗ (1)

Where B⃗·dA⃗ is the scalar product of the magnetic field and dA⃗, a vector normal to the infinitesimal

1See more about the R.M.F of an AC induction motor in Appendix A
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2.2 Magnetic Flux 2 THEORETICAL FRAMEWORK

surface area. We can express this according to their magnitudes and unit vectors:

ϕB =

∫
(BB̂) · (dAn̂)

Where B̂ is the unit vector that represents the direction of the magnetic field and n̂ is the unit vector

normal to the infinitesimal surface area.

ϕB =

∫
BdA(B̂ · n̂)

However, if the intensity of the magnetic field is constant throughout every part of the surface, then,

B comes out of the integral and using the definition of vector scalar product, a⃗ · b⃗ = |⃗a||⃗b| cos θ [3],

we express the flux as:

B̂ · n̂ = |1||1| cos θ = cos θ

ϕB = B cos θ

∫
dA

Considering the integral of an area is the area. We reach the expression for magnetic flux when the

magnetic field does not depend on the area:

ϕB = BA cos θ (2)

Where θ is the angle formed between the normal of the surface and the magnetic field lines.

6 of 33



2.3 Faraday’s Law of Induction 2 THEORETICAL FRAMEWORK

Figure 2: The figure shows the magnetic field making an angle θ with the vector normal to the
infinitesimal surface area. [1]

2.3 Faraday’s Law of Induction

In 1831, Michael Faraday realized 3 experiments making use of a loop of wire and a magnet. He

concluded that the relative motion of the magnetic field with respect to the loop induces a current

[4]. This phenomenon is known as electromagnetic induction, Faraday was the first scientist to make

note of its existence and express it into a mathematical expression known as Faraday’s law:

ε = −dϕB

dt
(3)

His law states that the induced emf is proportional to the rate of change of magnetic flux with

respect to time. The emf generates an electric field inside the conductor that will cause current to

flow. So, the faster the magnetic field changes with time, the more current will be induced in the

loop. The direction of the induced current as well as the negative sign of the equation are explained

through Lenz’s law.

Nowadays, Faraday’s law is better interpreted through Maxwell’s work [5]. James Clerk Maxwell,

after Faraday, from a geometric point of view, found that a varying magnetic flux with respect to

time over the area enclosed by the conductor, produces an electric field, that follows a closed path,

tangent to the conductor:

∮
E⃗ · d⃗l = − d

dt

∫
B⃗ · dA⃗
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2.4 Lenz’s Law 2 THEORETICAL FRAMEWORK

Where the left hand side of the equation represents the closed path followed by the electric field

in the conductor, the right hand side, represents the changing magnetic flux with respect to time.

This is known as the Maxwell-Faraday law in integral form.

Figure 3: An electric field is generated by a change in magnetic flux with respect to time, over the
area enclosed by the conductor. The generated electric field follows a closed path, tangent to the
conductor. [1]

2.4 Lenz’s Law

Lenz’s law states that the direction of the induced current in a loop will be orientated as to generate

a magnetic flux that compensates the change in magnetic flux. In other words, the induced current

will flow in the direction that generates a magnetic field that opposes the original one. This way

conserving the original magnetic flux through the loop.

Figure 4: Moving magnet induces a current whose magnetic field opposes the increment of the
original one. [6]
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2.5 Magnetic Force in a Conductor 2 THEORETICAL FRAMEWORK

2.5 Magnetic Force in a Conductor

A charged particle moving through a magnetic field experiences a magnetic force

F⃗B = qv⃗ × B⃗

Where × is the vector product operator. For a current carrying conductor, the equation is extended

to every particle moving inside. Henceforth, we multiply it by the number of charges and the volume

of the conductor.

F⃗B = (qv⃗ × B⃗)nAL

Replacing the value of current I = nqvA we reach a final equation for the magnetic force in a current

carrying conductor.

F⃗B = IL⃗× B⃗

Where L⃗ points in the direction of the current. Using the vector product definition, |L⃗ × B⃗| =

|L⃗||B⃗| sin θ[3], where θ, is the angle formed between the vector L⃗ and the magnetic field. Therefore,

the magnitude of the magnetic force on a current is:

FB = ILB sin θ (4)

It is important to mention that the force in the conductor will always be orthogonal to the

direction of the current and magnetic field.

2.6 Torque

Like the cause of change in translational motion is the force, the cause of change in rotational

motion is the torque (τ). This is defined as the tendency of a force to rotate a body about an axis

[7], generating either a clockwise or anticlockwise rotation. Mathematically, torque is defined as the

9 of 33



2.6 Torque 2 THEORETICAL FRAMEWORK

vector product of vector r⃗ (a position vector which points to the point of force application from the

rotation axis) and F⃗ (the force applied at some point over the body).

τ = r⃗ × F⃗

Using the vector product definition, |r⃗ × F⃗ | = |r⃗||F⃗ | sin θ, where θ, is the angle formed between the

vector r⃗ and F⃗ . We write the magnitude of the torque as:

τ = Fr sin θ (5)

Measured in N.m, where r sin θ is the lever arm, marking the perpendicular distance from the

axis of rotation to the point where the force is applied. Although, torque is a vector quantity, for

the present investigation we are only interested in its magnitude and how it should affect the loop.

Therefore, it should be noted that for rotating object, a negative torque would oppose its rotation

but a positive torque would complement it.
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3 THEORETICAL DEVELOPMENT

3 Theoretical Development

3.1 System to be studied

The system we will be analyzing consists of a permanent magnet next to a rectangular loop. The

magnet is to the left of the loop and has an axis of rotation at its center, perpendicular to the page.

The rectangular loop with length a and width b has an axis of rotation passing through its middle

directed in the vertical axis. Initially, the magnet’s north pole is parallel to the plane: ϕB = 0 as the

field is perpendicular with the normal of the area enclosed. However, a current will be induced and

a torque will be generated as both bodies rotate.

Figure 5: The magnet rotates clockwise and the loop anti-clockwise, each with their respective
angular velocity

3.1.1 Induced Current

For this general case, both the magnetic field and area rotate with their respective angular velocity.

We describe the variation of their magnitudes through the use of trigonometric functions. The

magnetic field is assigned a cosine function because it starts at a maximum.

B(t) = Bo cos(ωBt)
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3.1 System to be studied 3 THEORETICAL DEVELOPMENT

On the contrary, the magnetic flux over the area enclosed by the loop is initially 0. Therefore, a sine

function is appropriate for its description:

A(t) = ab sin(ωCt)

Where ωC is the angular velocity of the conductive loop. Henceforth, the magnetic field does not

depend on the area enclosed by the loop, but instead varies with respect to time. This way we use

equation 2 and replace the functions:

ϕB(t) = B(t)A(t)

Where cos θ is absorbed by the trigonometric terms:

ϕB(t) = Bo cos(ωBt)(ab) sin(ωCt)

To facilitate our calculation we’ll move all the constants to one side:

ϕB(t) = Bo(ab)[cos(ωBt) sin(ωCt)]

We take the derivative of the magnetic flux with respect to time. Employing the ”product rule” to

the terms in between the brackets.

dϕB

dt
= Boab[−ωB sin(ωBt) sin(ωCt) + ωC cos(ωCt) cos(ωBt)]

We multiply dϕ
dt

by -1 to reach an expression for the induced emf:
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3.1 System to be studied 3 THEORETICAL DEVELOPMENT

ε(t) = −dϕB

dt
= Boab[ωB sin(ωBt) sin(ωCt)− ωC cos(ωCt) cos(ωBt)]

Finally, assuming the loop is made of an ohmic material, we use Ohm’s law to reach an expression

for the induced current, from a rotating magnetic field:

ε(t) = I(t)R

I(t) =
Boab[ωB sin(ωBt) sin(ωCt)− ωC cos(ωCt) cos(ωBt)]

R
(6)

3.1.2 Torque produced from EMF

From Lenz’s law, we can deduce that the induced current will flow clockwise when the north pole

faces the area of the loop and counter clockwise when the south pole faces the area. This being

said, the magnetic force will be the same for either instance as the direction of current and field vary

simultaneously. Therefore, an analysis of either scenario suffices.

Figure 6: Birds eye view of the system when the induced current flows counterclockwise through the
loop

Figure 6, shows the direction of the magnetic forces experienced by the current flowing vertically

through the lengths of the loop. Since only the magnetic field perpendicular to the flow of current

13 of 33



3.1 System to be studied 3 THEORETICAL DEVELOPMENT

generates the magnetic forces, we can express their magnitude as such:

FB = IaB sin
(π
2

)
FB = IaB

Where I = I(t) and B = B(t) and the magnetic force is directed orthogonal to the vertical flow of

current and the horizontal field lines, as depicted in figure 6. We will not consider the magnetic forces

experienced by the current flowing through the width as they propose no effect over the rotation of

the loop.

To calculate the torque generated by each force first we have to deduce the lever arm. If the width

is ”b”, then the distance from the axis of rotation to the point of force is b
2
. Likewise, according to

figure 6, the angle θ determines the perpendicular component of the distance. Therefore, the lever

arm is:

b

2
sin θ

Consequently, the magnitude of torque for a single side is expressed as:

τ = FB
b

2
sin θ

To determine the net torque we add both torques in their complete expressions.

τnet = IaB
b

2
sin θ + IaB

b

2
sin θ = IabB sin θ

We can express θ in terms of ωC considering that initially θ = π
2
but its value decreases according to
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3.1 System to be studied 3 THEORETICAL DEVELOPMENT

the angular velocity of the loop.

τnet = IabB sin
(π
2
− ωCt

)

τnet = IabB cos(ωCt)

To reach a complete expression for the torque, we’ll replace the predetermined values of I and B:

τnet =

[
Boab[ωB sin(ωBt) sin(ωCt)− ωC cos(ωCt) cos(ωBt)]

R

]
ab [Bo cos(ωBt)] cos(ωCt)

By simplifying the equation we obtain a general expression for the torque as a function of time:

τ(t) =
B2

oa
2b2

R
[ωB sin(ωBt) sin(ωCt)− ωC cos(ωCt) cos(ωBt)] cos(ωBt) cos(ωCt) (7)

Nonetheless, given the extensive trigonometric terms in our function, a question presents itself.

To what extent can we properly analyse the behaviour of the torque?

3.1.3 Evaluation

To study the behaviour of the torque with respect to time, we have to assign values to each constant

as to obtain graphs that can be properly analyzed. According to equation 7, the theoretical behaviour

depends on two factors; the magnitudes outside of the brackets and the angular velocities. The mag-

nitudes in B2
oa

2b2

R
have no greater effect on the behaviour, other than influencing the amplitude of

the possible oscillation. However, the magnitude of each angular velocity (ωB and ωC) has a direct

effect on the behaviour of the torque as these are embedded in the trigonometric terms of the function.

If we plot our expression assuming B2
oa

2b2

R
= 1 and assigning different values to each angular ve-
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3.1 System to be studied 3 THEORETICAL DEVELOPMENT

locity, we observe there are many possible behaviours for the torque.

Figure 7: Torque vs time graph. When ωB = 10 rad
s

and ωC = 0.1 rad
s
. Own Image. Made using

Wolfram Mathematica [8]

Figure 8: Torque vs time graph. When ωB = 5 rad
s

and ωC = 8 rad
s
. Own Image. Made using Wolfram

Mathematica [8]

For that reason, to narrow down the scope of our investigation and limit the complexity of the

behaviour we will analyze two cases where we reduce the angular velocity to only one.
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3.2 Particular Cases 3 THEORETICAL DEVELOPMENT

3.2 Particular Cases

3.2.1 Case 1: Stationary Magnetic Field and Rotating Loop

Figure 9: Magnet is stationary and loop is rotating

Similar to an induction generator, in this first case, the magnet remains stationary and only the

rectangular loop will rotate. To reach an expression for the behaviour of the torque in this scenario,

we will start from the general equation (7). If the magnetic field is stationary, then its angular

velocity is equal to zero (ωB = 0). Therefore, we can express the function of torque as:

τ(t) =
B2

oa
2b2

R
[0 sin(0t) sin(ωCt)− ωC cos(ωCt) cos(0t)] cos(0t) cos(ωCt)

τ(t) =
B2

oa
2b2

R
[−ωC cos(ωCt)] cos(ωCt)

We can omit the specification of the angular velocity as there is only one rotating object in the

system . Thus, when only the loop rotates, the behaviour of torque with respect to time is depicted

by the following function:

τ(t) = −B2
oa

2b2

R
ω cos2(ωt) (8)
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3.2 Particular Cases 3 THEORETICAL DEVELOPMENT

3.2.2 Case 2: Magnetic Field and Loop rotate at the same angular velocity

Figure 10: Magnet and loop rotate at the same angular velocity

For the second case the magnet and the rectangular loop will rotate, like in an induction motor. But

unalike an induction motor they will rotate in sync. Therefore, we can simplify the general equation

considering their angular velocities are the same (ωB = ωC = ω).

τ(t) =
B2

oa
2b2

R
[ω sin(ωt) sin(ωt)− ω cos(ωt) cos(ωt)] cos(ωt) cos(ωt)

τ(t) =
B2

oa
2b2

R
ω [sin(ωt) sin(ωt)− cos(ωt) cos(ωt)] cos2(ωt)

To simplify the equation inside the brackets we apply the trigonometric property: sin2(x)−cos2(x) =

− cos 2x. This way reaching a desired function for the torque:

τ(t) = −B2
oa

2b2

R
ω cos(2ωt) cos2(ωt) (9)
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4 EXPERIMENTATION

4 Experimentation

4.1 Data Recollection

Using an induced current simulator, the torque over the loop at different instants in time was ob-

tained. For those same instants, we will calculate the torque using our equations. This will be done

with the purpose of comparing how the simulated experimental data compares with the theoretical

model.

However, we must first assign values for the initial conditions of the simulated system. For the

dimensions of the rectangular loop, we assigned relatively realistic values, assuming a rectangular

loop of wire is typically not tremendous. For the intensity of the magnetic field and the resistance of

the loop, we assigned values that would result in an amplitude that is not too significant. Further-

more, the angular speed for both cases will be a sensible value, as shown in the table below.

Variable Magnitudes

Bo 10.0 T

a 0.40 m

b 0.20 m

R 3.00 Ω

ω 5.00 rads−1

Table 1: Initial conditions for simulator

4.1.1 Case 1: Stationary Magnetic Field and Rotating Loop

For case 1, the magnetic field is stationary and the loop rotates at 5 rad.s−1. The simulator gives

the following values for the torque at the following instants:
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4.1 Data Recollection 4 EXPERIMENTATION

Time (s) Torque (Nm)

0.12 -0.721

0.24 -0.123

0.37 -0.081

0.51 -0.742

0.64 -1.065

0.74 -0.758

0.88 -0.089

1.01 -0.115

1.13 -0.716

1.26 -1.066

Table 2: Case 1 - Experimental values

To calculate the theoretical values for the torque at the same instants as the simulator we will

employ equation 8:

τ(0.12) = −(10T )2(0.4m)2(0.2m)2

3Ω

(
5rads−1

)
cos2

((
5rads−1

)
(0.12s)

)

τ(0.12) = −0.727Nm

We will repeat this process for every instant of time in the data obtained by the simulator. In this

manner, formulating a table that presents our theoretical values:
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4.1 Data Recollection 4 EXPERIMENTATION

Time (s) Torque (Nm)

0.12 -0.727

0.24 -0.140

0.37 -0.081

0.51 -0.735

0.64 -1.063

0.74 -0.767

0.88 -0.101

1.01 -0.117

1.13 -0.693

1.26 -1.066

Table 3: Case 1 - Theoretical values

4.1.2 Case 2: Magnetic Field and Loop rotate at the same angular velocity

For case 2, both the magnet and the loop rotate at 5 rad.s−1. The simulator gives the following

values for the torque at the following instants:
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4.1 Data Recollection 4 EXPERIMENTATION

Time (s) Torque (Nm)

0.14 -0.136

0.26 0.063

0.39 0.100

0.49 -0.147

0.64 -1.063

0.76 -0.163

0.87 0.105

0.99 0.053

1.11 -0.068

1.26 -1.067

Table 4: Case 2 - Experimental values

Employing equation 9 to calculate the theoretical values of torque at the same instants as the

simulator:

τ(0.14) = −(10T )2(0.4m)2(0.2m)2

3Ω
(5rads−1) cos(2(5rads−1)(0.14s)) cos2((5rads−1)(0.14s))

τ(0.14) = −0.106Nm

Repeating this process for every instant of time in the data obtained by the simulator. In this

manner, formulating a table that presents our theoretical values:
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Time (s) Torque (Nm)

0.14 -0.106

0.26 0.065

0.39 0.106

0.49 -0.118

0.64 -1.056

0.76 -0.168

0.87 0.100

0.99 0.053

1.11 -0.061

1.26 -1.066

Table 5: Case 2 - Theoretical values
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5 Data Analysis

5.1 Approach

With the data we have recollected, using Excel, we will plot the points in a torque vs time graph.

Considering we have a function for the torque, in each case, we can extend the tables of theoretical

values for infinitesimal instances, generating a proper plot of the theoretical model. Thereupon, we

will situate the points extracted from the simulator in a graph with the theoretical values, observing

how the experimental data adjusts to the theoretical model. Furthermore, we will compare both

cases and expand on our work by determining a relationship between the maximum torque and the

angular velocity.

5.2 Case 1: Stationary Magnetic Field and Rotating Loop

Figure 11: Comparing the theoretical and experimental data of Case 1. Made in Excel.

Observing figure 11, when only the loop rotates and the magnet is stationary, the theoretical model

for the torque with respect to time, shows an oscillating behaviour. The torque oscillation takes place
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5.3 Case 2: Magnetic Field and Loop rotate at the same angular velocity 5 DATA ANALYSIS

exclusively underneath the time axis, indicating a torque that only has negative values. Furthermore,

we observe how the values of the torque obtained by the simulator align almost to perfection with

our theoretical model. We can say that our results were as expected.

5.3 Case 2: Magnetic Field and Loop rotate at the same angular velocity

Figure 12: Comparing the theoretical and experimental data of Case 2. Made in Excel.

Observing figure 12, when both the magnet and loop rotate at the same velocity, the theoretical model

for the torque with respect to time, shows an irregular oscillating behaviour. Where the oscillation

has 2 crests and three troughs. Also, it is pertinent that we point out the torque oscillates temporarily

above the time axis, the implications of this will be discussed in the conclusions. Furthermore, we

observe how the data generated by the simulator coincides to great degree with the theoretical

behaviour of the torque. We can say our results where as expected.
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5.4 Comparing both Cases 5 DATA ANALYSIS

5.4 Comparing both Cases

Figure 13: Comparing the plots of case 1 and case 2. Made in Excel.

We can plot and compare both oscillations according to their theoretical behaviour as there is little

margin of error with the experimental data. Observing figure 13 the crest of Case 1’s oscillation

coincides with the trough of the concavity of Case 2. Secondly, we observe how the maximum

magnitude of torque is the same for both and occurs at the same instant. Lastly, the torque is zero

far more frequently when both magnet and loop rotate than when only the loop rotates. Nonetheless,

the most noticeable difference with both plots is that Case 2 has values for positive torques while

Case 1 does not.

5.5 Relationship between Maximum Torque and Angular Velocity

Now that we have seen how torque behaves with respect to time, we are interested to extend this

investigation and see how the magnitude of maximum torque varies according to different angular

velocities.
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5.5 Relationship between Maximum Torque and Angular Velocity 5 DATA ANALYSIS

As we observed in figure 13, for both cases the magnitude of the maximum torque is the same

and occur at the same instants. Likewise, observing equation 8 and equation 9 when t = 0 there

will be a maximum value for the torque. This is only considering the loop or both loop and magnet

are initially rotating. Thus, theoretically, the relation between the maximum torque and angular

velocity should obey the following equation:

τmax = −B2
oa

2b2

R
ω

Using the simulator, we obtained values for the maximum torque at different angular velocities. We

plot this data using Excel and using Excel’s data analysis tool for the linear regression.

Figure 14: Linear regression of Maximum Torque vs Angular Velocity. Made in Excel.
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5.5 Relationship between Maximum Torque and Angular Velocity 5 DATA ANALYSIS

We observe that the angular velocity and the negative magnitude of torque are directly propor-

tional. Moreover, according to Excel, the slope of the linear regression function with its respective

uncertainty is:

−0.2123Nms± 0.0084Nms

Where the uncertainty is minimal because the experimental data points lie almost completely under

the linear regression function. If we compare this to our theoretical slope:

−B2
oa

2b2

R
= −(10T )2(0.4m)2(0.2m)2

(3Ω)2
= −0.2133Nms

We validate the certainty of our theoretical model as both slopes are essentially the same. This

premise is reinforced by calculating the percentile error:

%Error =
| 0.2133− 0.2123 |

0.2133
100% = 0.469%
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6 Conclusions and recommendations

According to equation 8, when the magnetic field is stationary we expected an oscillatory behaviour

for the torque because of the identical cosine terms (cos2 x) presented in the function. On the other

hand, according to equation 9, when the magnet rotates at the same velocity as the loop, we expected

a more complex oscillatory behaviour for the torque because the function includes two different cosine

terms [cos(2ωt) cos2(ωt)]. Plotting both functions we conclude that the torque behaves as expected.

As we can observe in figure 11 and figure 12 the experimental data from the simulator aligns almost

perfectly with the theoretical behaviour. Error bars were obtained but were insignificant compared

to the scale of the graph. This suggests that our theoretical work has been correct.

However, the question still remains, what do these behaviors of the torque implicate on the ro-

tation of the loop? According to figure 13 when the magnet is stationary the torque will always

have a negative magnitude, thus showing a torque that will always oppose the rotation of the loop.

However, if the magnet and loop rotate, the torque can assume positive magnitudes. Meaning it will

spend most time opposing the rotation but for short periods of time, the magnetic torque will have

the same direction as the loop’s rotation. Presumably, this would suggest a temporary increase in

the velocity of the loop, as the torque should complement its rotation. Therefore, we can conclude,

that for our system to be functional, the loop must experience another torque of the same magnitude

but in the opposite direction as the magnetic torque, to cancel out its effects.

The relation between the maximum magnitude of the magnetic torque and the angular velocity

was explored in figure 14. Where we concluded, the faster the magnetic field or both field and loop

rotate, the greater will be the magnetic torque generated that opposes the rotation of the loop. This

relationship coincides with the theoretical presumption. As according to Faraday’s law (3), the faster

the magnetic flux over the loop varies with respect to time, the greater the current induced on the

loop, consequently, greater torque should be generated. Likewise, the slope for the experimental

linear regression according to Excel is almost identical to our theoretical slope, with an insignificant
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percentile error of 0.47%. In this manner, we can conclude, that the system behaves accordingly to

our theoretical analysis. Marking the success of the theoretical analysis.

Our investigation was based on an ideal system, where the loop can rotate at a constant angular

velocity despite experiencing an opposing magnetic torque. However, since we were only interested

on the behaviour of the magnitude of the magnetic torque and its hypothetical effect on the loop,

there was no harm done omitting such factors. Like this one, there are many others that were not

considered in our system. For example; eddy currents, air friction, magnetic dipoles, among others.

Apart from the forementioned, it would be interesting to add new components and conditions to the

system: having more than one magnet or considering a 3 dimensional loop. However, what could

be the most interesting way of expanding this investigation, is considering the torque does affect the

rotation of the loop, so its angular velocity will no longer be constant.
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A R.M.F OF AN AC INDUCTION MOTOR

A R.M.F of an AC Induction Motor

The rotating magnetic field in modern AC induction motors is produced from 3 pairs of electromag-

nets2. The conductors are separated by 120 degrees and the currents are each out of sync by 120

degrees. Having 3 alternating currents, we have 3 alternating magnetic fields. As the fields are a

direct product of the current we attribute them the same sinusoidal behaviour. Therefore we can

write the flux of each field as the following:

ϕA = ϕMax sin(ωt)

ϕB = ϕMax sin(ωt+
2π

3
)

ϕC = ϕMax sin(ωt−
2π

3
)

The magnetic fields interact to form a resulting field. Each field changes in direction and is present

only for certain intervals of time. The flux of the fields will interact in specific points, their interactions

over time simulate a single rotating field.

2In simple terms: currents passing through a conductor
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Figure 15: Varying flux in RMF. Own Image
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